P-arch - Digital Repository

Coarse-grained Multiresolution Structures for Mobile Exploration of Gigantic Surface Models

Mostra i principali dati

dc.contributor.author Balsa Rodriguez, Marcos
dc.contributor.author Gobbetti, Enrico
dc.contributor.author Marton, Alex
dc.contributor.author Tienforti, Alex
dc.date.accessioned 2014-05-16T09:45:13Z
dc.date.available 2014-05-16T09:45:13Z
dc.date.issued 2013-11
dc.identifier.isbn 978-1-4503-2633-9 IT
dc.identifier.uri http://hdl.handle.net/11050/910
dc.description.abstract We discuss our experience in creating scalable systems for distributing and rendering gigantic 3D surfaces on web environments and common handheld devices. Our methods are based on compressed streamable coarse-grained multiresolution structures. By combining CPU and GPU compression technology with our multiresolution data representation, we are able to incrementally transfer, locally store and render with unprecedented performance extremely detailed 3D mesh models on WebGL-enabled browsers, as well as on hardware-constrained mobile devices. IT
dc.language.iso en IT
dc.publisher ACM IT
dc.relation.ispartof SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications IT
dc.subject mobile graphics IT
dc.subject LOD IT
dc.subject massive models IT
dc.subject compression IT
dc.title Coarse-grained Multiresolution Structures for Mobile Exploration of Gigantic Surface Models IT
dc.type Contributo in un libro IT
dc.identifier.doi 10.1145/2543651.2543669 IT
dc.subject.een-cordis EEN CORDIS::ELETTRONICA, INFORMATICA E TELECOMUNICAZIONI::Telecomunicazioni, reti::Telefonia mobile IT
dc.subject.een-cordis EEN CORDIS::ELETTRONICA, INFORMATICA E TELECOMUNICAZIONI::Multimedia::Visualizzazione, realtà virtuale IT
dc.subject.progetti Progetti::Bando competitivo/Grant::Finanziamento europeo/internazionale::EC FP7, FP6, FP5::DIVA - Data Intensive Visualization and Analysis IT
dc.subject.program Program::Data Fusion::Visual Computing (VIC) IT


File allegati

Questo inserimento fa parte delle seguenti collezioni

Mostra i principali dati